



## The Status of Reactors, Accelerators and their Expanded Applications in Korea

9 DEC 2021

Dr. KWON Hyunjoon

**Director-General** Ministry of Science and ICT Republic of Korea

### CONTENTS



PART.1

Reactors and its Applications



PART.2

Accelerators and its Applications



PART.3

Global Contributions and Plans





PART.1

# Reactors and its Applications \_



#### 1 · Research Reactor: HANARO



Multi-purpose research reactor with a thermal power of 30MW



World's 5th and Asia's 1st IAEA-designated ICERR\*





**HANARO** 

**ICERR Designation Certificate** 

<sup>\*</sup> International Centres based on Research Reactors

#### 2 · Small Modular Reactors : SMART and i-SMR



- SMART (System-integrated Modular Advanced ReacTor)
  - World's first integral-type SMR with the Standard Design Approval
    - Electric power of 110MW (per module)
    - Completed R&D and validation of a design with enhanced inherent safety
    - Accomplished Pre-Project Engineering (PPE) for the construction of SMART in Saudi Arabia (Feb. 2019)
    - Under a review process for the SDA



#### 2 · Small Modular Reactors : SMART and i-SMR



#### i-SMR

Innovative SMR to enter the global market in the 2030s



The world's best safety, economic viability and load following capacity



170MWe per module



Integral component modularization

#### 2 · Small Modular Reactor : SMART and i-SMR



#### **3** ⋅ New Research Reactor



- Launched in 2012, and under demonstration phase (~2027)
  - Expansion of domestic medical and industrial radioisotopes supply
  - Contribution to supply and cost stabilization of the global RI market
  - Verification of the safety of the next-generation nuclear fuel\* in 2019
    \* U-Mo flat-type fuel production







U-Mo flat-type fuel



PART.2

# Accelerators and its Applications



#### · Synchrotron Light Sources

3<sup>rd</sup> generation Pohang Light Source (PLS) and X-ray Free-Electron Laser (XFEL)



#### **Applications**

- Protein analysis
- Photosynthesis analysis
- Cell observation
- Atom-level semiconductor development
- Chemical catalytic reactions

#### Accomplishments

 Developed COVID-19 treatment (Regdanvimab) using PLS and received approval from European Medicines Agency



### 1 · Synchrotron Light Sources

3<sup>rd</sup> generation Pohang Light Source (PLS) and X-ray Free-Electron Laser (XFEL)

|                           | 3 <sup>rd</sup> Generation PLS               |                                            |                                                    |
|---------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------------|
|                           | Before                                       | After <i>(PLS-  )</i>                      | XFEL                                               |
| Shape                     | Round                                        |                                            | Linear                                             |
| Beam energy               | 2.5GeV                                       | 3.0GeV                                     | 10GeV                                              |
| Brightness                | 100 million times brighter than the sunlight | 100 times brighter than the previous model | 100 million times brighter than PLS- ${\mathbb I}$ |
| Time Resolution           | 10 <sup>-12</sup>                            |                                            | 10 <sup>-15</sup>                                  |
| Characteristics of Lights | Wide range of wavelengths                    |                                            | 0.1nm<br>single wavelength (laser)                 |
| Analysis Level            | Static analysis                              |                                            | Real time 3 dimensions<br>Dynamic analysis         |
| Applicable Area           | Crystal protein, frozen cells                |                                            | Monomolecular protein , living cells               |

#### 2 · Multi-purpose Synchrotron Light Sources: 4th Generation Storage Ring



World-class multi-purpose synchrotron light sources (2021~2027)



**Multipurpose Synchrotron Radiation Source** 

- Objective Improving synchrotron light sources technology, supporting industry R&D and promoting basic & original technology research activities
- Budget 1 trillion and 45.4 billion won ( \(\Rightarrow\)USD 880 million)
- Plan Establishing one synchrotron light source (beam emittance below 0.1nm·rad) and 10 beamlines by 2027

#### 3 · Rare Isotope Accelerator : RAON



- Large-scale nuclear physics research facility with rare isotope (2011~)
  - **Objective** Boosting the advanced basic scientific research by using rare isotopes in the relevant fields such as nuclear science, astrophysics, material properties, and others
  - **Budget** 1 trillion and 518.3 billion won (≒USD 1.28 billion)
  - ► Capacity Acceleration energy : 200mev/u, Maximum beam power : 400kW
  - Characteristics Combination of Isotope Separation On-Line (ISOL) and Inflight Fragmentation (IF)







Front View

**Low Energy Experiment Device** 

Injector

#### **4** ⋅ Proton Accelerator Research Center



- Research facility for Nano-engineering/material engineering,
  Space & Basic science and biomedical areas (2013~)
  - Facilities 4 beamlines
  - Applications Material changes, neutron production, medical/industrial radioisotope production, and strategic semiconductor manufacturing
  - Plan Accelerator system upgrade from 100MeV to 200MeV beam energy



**Proton Accelerator Beamline** 



PART.3

## Global Contributions and Plans



### **Global Contributions and Plans**

#### 1 · A Main Hub for Research Reactor Operation and Application



 Contributing to the research reactor technology development through the close cooperation with the IAEA and its member states



- Supporting the capacity building of IAEA member states on the applications
  - MOA between KAERI-PNRI for the construction of neutron activation analysis facilities and human resource development (July. 2021)



Digitalization of PUSPATI TRIGA MARK- II in Malaysia (2012~2014)



Workshop with IAEA on Safety and Utilization of Research Reactor (2017)

#### -0-0-

#### 2 · Contributing to the Next Generation Innovative Nuclear System Development



 Participating in the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) since 2001



- Boosting the innovative nuclear system development and facilitating information-sharing among the members
  - ► Case 1 Joint case studies on advanced PHWR of India
  - Case 2 Dialogue Forums in 2012 and 2019



17th IAEA INPRO Dialogue Forum on Opportunities and Challenges in SMR (Ulsan, Korea, '19.7)

#### 3 · Supporting the Asia-Pacific Region through RCARO



- Developing and operating RCA e-learning campus (Jun. 2020~)
  - About 170 modules on nuclear medicine and radiation safety



 Backing RCARO to provide various educational modules, including reactors and accelerators







Module Page





## Thank you